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Abstract: We consider acoustic wave propagation in periodic scaffolds saturated by inviscid fluid at rest.
To analyze the wave dispersion, two approaches are examined: the periodic homogenization (PH) and the
Floquet-Bloch wave decomposition (FB). While PH gives dispersion-less response, the FB method enables to
capture band gap behaviour.
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1. Introduction

Modelling of acoustic waves in fluid saturated porous media has been treated mostly using the homogeniza-
tion theory (Sanchez-Palencia, 1980), or using the phenomenological models using the theory of porous
media. In this paper, we report on the acoustic wave dispersion in periodic scaffolds constituted by sintered
ceramic fibres. Waves in theses elastic structures were studied recently by Kruisová et al. (2018) without
effects of the fluid. Here we consider waves propagating in a fluid saturating these periodic structures (scaf-
folds) while neglecting their compliance. The dispersion analysis is based on a model obtained using the
Floquet-Bloch theory, cf. Collet et al. (2011), enabling to analyze wave of lengths comparable with the pe-
riodicity size. For comparison, the lowest frequency modes are compared with the homogenization-based
prediction.

We recall the Navier-Stokes equations for a homogeneous, slightly compressible viscous fluid, while ther-
mal effects are disregarded (barotropic fluid). The fluid velocity w and pressure q satisfy

ρ0

(
∂

∂t
w + w · ∇w

)
= −∇q +∇ · IDe(w) , γ

(
∂

∂t
q + w · ∇q

)
= −∇ · w , (1)

where ρ0 is the reference fluid density, γ is the compressibility, and IDe(w) represents the viscous stress
given by the velocity strain e(w) = 1/2(∇w + (∇w)T ) and by the viscosity tensor, ID = (Dijkl) with
Dijkl = ηδijδkl + µ(δikδjl + δilδjk) depending on the 1st and the 2nd viscosities, µ and η, respectively.
Since we are interested in acoustic waves, the total velocity and pressure fields can be decomposed into
steady (denoted by bar) and fluctuating parts (denoted by tilde )̃,

w = w̄ + ũ , q = q̄ + p̃ . (2)

In this paper, we confine to the acoustics of inviscid stationary fluids, the only velocity corresponds to the
perturbations by the transmitted acoustic waves, i.e. w̄ = 0 and µ = η = 0.

2. Floquet-Bloch decomposition of waves in scaffolds saturated by inviscid fluid

We consider an infinite porous medium Ω ⊂ R3 whose the periodic structure is generated by a representative
periodic cell Z = Π3

i=1]0, ai[ which is a block with edges ai. The fluid occupies channels Ωf ⊂ Ω which
are represented by Zf ⊂ Z . Thus, the periodic cell Z consists of the fluid and solid parts separated by the
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fluid-solid interface ∂sZf , such thatZ = Zf ∪Zs∪∂sZf . By ∂#Zf = ∂Zf \∂sZf we denote the “periodic
part” of the boundary, ∂#Zf ⊂ ∂#Z . A Z periodic function attains the same values at the homologous
points on opposite faces of ∂#Z .

We consider the decomposition (2) and assume stationary inviscid fluid, i.e. w̄ = 0. Assuming that γ and
ρ0 are constants, the fluid velocity field can be eliminated from the system (1), so that

γρ0
∂2

∂t2
p̃ = ∇2p̃ , in Ωf , νf · ∇p̃ = 0 , on ∂sΩf , (3)

where νf designates the unit normal vector outward to Zf . By virtue of the Floquet-Bloch theory, the wave
p̃(t, x) propagating in an infinite medium is expressed in terms of a Z-periodic function p(x), such that

p̃(x, t) = p(x)e−iκ·xeiωt , ũ(x, t) = u(x)e−iκ·xeiωt , (4)

for x ∈ Ωf , where the wave vector κ = κn is given by the wave direction n and the wave number κ.
Functions u and p are Z -periodic and u · νf = 0 on ∂sZf . Let H1

#(Y ) denotes the Sobolev space of
weakly differentiable Y -periodic functions defined in Y . The following space of Z -periodic functions p is
used (note ∇(qe−iκ·x) = (∇q − iκq)e−iκ·x)

p̃(·, t) ∈ P#(κ,Zf ) := {q ∈ H1
#(Zf )| (∇q − iκq) · νf = 0 on ∂sZf} . (5)

The weak formulation of (3) can be established in the standard way using the variational equality,

γρ0

∫

Zf

∂2

∂t2
p̃q̃ +

∫

Zf

∇p̃ · ∇q̃ =

∫

∂Zf

∇p̃ · νf q̃ , (6)

which is to be satisfied by the solution p̃(·, t) ∈ P#(κ,Zf ) and for all q̃ ∈ P#(−κ,Zf ), thus the test
functions q̃ = qeiκ·xeiωt associated with (4) describe waves propagating in the opposite directions. This
choice yields vanishing the right-hand side integral. Due to the zero Neumann condition, the integral on
∂Zf reduces immediately to the integral on the periodic part only, ∂#Zf , which vanishes as well due to
the periodicity of p̃. Finally, (6) with the substituted Floquet-Bloch wave form (4) presents the eigenvalue
problem: Given κ, compute ω and p ∈ H1

#(Zf ) satisfying

(κ2 − γρ0ω2)

∫

Zf

pq +

∫

Zf

∇p · ∇q + iκ
∫

Zf

(∇p · nq − np · ∇q) = 0 , ∀q ∈ H1
#(Zf ) . (7)

2.1. Numerical computing of the wave dispersion

Using a notation self-explaining in the context of the FE method, the following discretized forms are intro-
duced,

∫

Zf

∇p · ∇q FEM≈ qTCp ,

∫

Zf

∇p · nq FEM≈ qTYp ,

∫

Zf

pq
FEM≈ qTMp , (8)

where q and p represent the nodal DOFs of fields p and q, respectively. Using this approximation in (7),
the discretized dispersion equation is obtained,

[
C + (κ2 − ω2

kγρ0)M + iκ(YT −Y)
]
pk = 0 , (9)

which for a given real wave number κ and the wave direction n yields a real eigenvalue ωk and the wave
mode pk representing amplitudes p(x); note that matrix κM + iκ(YT −Y) + C) is Hermitean, whereby
γρ0M symmetric positive definite.
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2.2. Homogenization and asymptotics for low frequencies

The periodic homogenization of model (3) considered in the frequency domain provides a modified Helmholtz
equation governing the acoustic wave propagation, see e.g. Cioranescu et al. (2018),

∇ · A∇p0 +
ω2

c2f
φfp

0 = 0 , (10)

where φf is the fluid volume fraction, cf is the sound speed in the free fluid. The tensor A = (Aij) is
computed in terms of the corrector functions πk defined in the representative pore Yf = ε−1Zf defined by
a “zooming” factor 1/ε, where ε ≈ maxi{ai} corresponds to the characteristic dimension of the channels.
Note that Y = ε−1Z is established accordingly, thus Yf ⊂ Y . Using the Y -periodic solutions πk ∈
H1

#(Yf ) of the following variational equation,

∫

Yf

∇y(πk + yk) · ∇yq = 0 ∀q ∈ H1
#(Yf ) , (11)

the tensor components Aij are computed using

Akl = |Y |−1
∫

Yf

∇y(πk + yk) · ∇y(πl + yl) , (12)

where ∇y is the gradient with respect to to micro-coordinates y ∈ Y .

The wave dispersion analysis is obtained using p0 = p̂ exp{−iκ · x}, with κ = κn substituted in (10).
Using the free fluid wave number κf = ω/cf , the wave number κ of the acoustic waves in the homogenized
scaffolds is given by projection of tensor A into the dyadic tensor defined by the wave direction,

κ = κf

√
φf

A : n⊗ n . (13)

3. Numerical illustration and discussion

We report numerical results computed for porous structure generated as periodic structures considered also
the work by Kruisová et al. (2018). The eigenvalue problem (7) was discretized by the finite element
method, as implemented in the software SfePy (Cimrman et al., 2018), leading to the matrix problem (9).
The eigenvalues were computed using the ARPACK solver (implicitly restarted Lanczos method, Lehoucq
et al. (1998)) through the SciPy package (function eigsh(), see Jones et al. (2001)). The shift-invert
mode was used to accelerate the calculation of the smallest eigenvalues.

The dispersion analysis was applied to a series of reference periodic cells with diameters of the solid fibres
in interval [0.01, 0.23] mm, see Fig. 1, (a). The inviscid fluid parameters were γ = 5 · 10−10 Pa−1, ρ0 =
1000 kg/m3. The incoming wave vector direction was n = [1, 0, 0]T , and the wave number range was
κ ∈ [10, 8410] m−1, covering the first Brillouin zone with size ≈ 8371 m−1.

In Fig. 1, (b)-(d), we show the dependence of the eigenfrequencies ω (in MHz) on the wave number κ (in
mm−1) for three selected diameters of the solid fibres. It can be observed that with decreasing porosity
(increasing the fibres diameter) the two lowest modes do not intersect each other and a band gap opens. The
solution provided by the homogenized model provides a good approximation only for very small diameters
(large volume fractions), or for waves with large wavelengths. Further research is focused on viscous fluids
and acoustics in steady flows.
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(a) (b) d = 0.01 mm
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(b) d = 0.15 mm d = 0.23 mm

Fig. 1: a) The periodic cell of the microstructure; the gray zone represents the fluid part Zf . b)-d) The
dispersion curves for the microstructure with variable diameter d of the solid fibres. The solid color lines
show the dependence of several lowest eigenfrequencies ω (in MHz) on the wave number κ (in mm−1). For
a given κ, different curves represent ωk(κ) computed by solving (9). The dashed lines computed using (13)
depict the response ω − κ of the homogenized model.
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